All the GIT quotients at once
نویسنده
چکیده
Let G be an algebraic torus acting on a smooth variety V . We study the relationship between the various GIT quotients of V and the symplectic quotient of the cotangent bundle of V . Let G be a reductive algebraic group acting on a smooth variety V . The cotangent bundle T V admits a canonical algebraic symplectic structure, and the induced action of G on T V is hamiltonian, that is, it admits a natural moment map μ : T V → g (see Equation (1) for an explicit formula). Over the past ten years, a guiding principle has emerged that says that if X is an interesting variety which may be naturally presented as a GIT (geometric invariant theory) quotient of V by G, then the symplectic quotient μ(λ)/G of T V by G is also interesting. This mantra has been particularly fruitful on the level of cohomology, as we describe below. Over the complex numbers, a GIT quotient may often be interpreted as a Kähler quotient by the compact form of G, and an algebraic quotient as a hyperkähler quotient. For this reason, the symplectic quotient may be loosely thought of as a quaternionic or hyperkähler analogue of X. Let us review a few examples of this construction. Hypertoric varieties. These examples comprise the case where G is abelian and V is a linear representation of G. The geometry of toric varieties is deeply related to the combinatorics of polytopes; for example, Stanley [St] used the hard Lefschetz theorem for toric varieties to prove certain inequalities for the h-numbers of a simplicial polytope. The hyperkähler analogues of toric varieties, known as hypertoric varieties, interact in a similar way with the combinatorics of rational hyperplane arrangements. Introduced by Bielawski and Dancer [BD], hypertoric varieties were used by Hausel and Sturmfels [HS] to give a geometric interpretation of virtually every known property of the h-numbers of a rationally representable matroid. Webster and the author [PW] extended this line of research by studying the intersection cohomology groups of singular hypertoric varieties. Quiver varieties. A quiver is a directed graph, and a representation of a quiver is a vector space for each node along with a linear map for each edge. For any quiver, Nakajima [N1, N2, N3] defined a quiver variety to be the quaternionic analogue of the moduli space of framed representations. Examples include the Hilbert scheme of n points in the plane and the moduli space of instantons on an ALE space. He has shown that the cohomology and K-theory groups of quiver varieties carry actions of Kac-Moody algebras and their associated quantum algebras, and has exploited this fact to define canonical bases for highest weight representations. Crawley-Boevey and Van den Bergh [CBVdB] and Hausel [Ha] have used Betti numbers of quiver varieties to prove a long standing conjecture of Kac. Hyperpolygon spaces. Given an ordered n-tuple of positive real numbers, the associated polygon space is the moduli space of n-sided polygons in R with edges of the prescribed Partially supported by a National Science Foundation Postdoctoral Research Fellowship.
منابع مشابه
Symplectic implosion and non-reductive quotients
There is a close relationship between Mumford’s geometric invariant theory (GIT) in (complex) algebraic geometry and the process of reduction in symplectic geometry. GIT was developed to construct quotients of algebraic varieties by reductive group actions and thus to construct and study moduli spaces [28, 29]. When a moduli space (or a compactification of a moduli space) over C can be construc...
متن کاملEquations for Chow and Hilbert Quotients
We give explicit equations for the Chow and Hilbert quotients of a projective scheme X by the action of an algebraic torus T in an auxiliary toric variety. As a consequence we provide GIT descriptions of these canonical quotients, and obtain other GIT quotients of X by variation of GIT quotient. We apply these results to find equations for the moduli space M0,n of stable genus zero n-pointed cu...
متن کاملO ct 2 00 5 All the GIT quotients at once
Let T be an algebraic torus acting on a smooth variety V . We study the relationship between the various GIT quotients of V and the symplectic quotient of the cotangent bundle of V . 1 The general case Let V be a smooth algebraic variety over an arbitrary field k. We will assume that V is projective over affine, which means that the natural map V → SpecOV is projective. Let T be an algebraic to...
متن کاملQuotients by non-reductive algebraic group actions
Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...
متن کاملNEF DIVISORS ON M0,n FROM GIT
We introduce and study the GIT cone of M0,n, which is generated by the pullbacks of the natural ample line bundles on the GIT quotients (P)//SL(2). As one application, we prove unconditionally that the log canonical models of M0,n with a symmetric boundary divisor coincide with the moduli spaces of weighted curves or with the symmetric GIT quotient, extending the result of Matt Simpson.
متن کاملEpipelagic representations and invariant theory
We introduce a new approach to the representation theory of reductive p-adic groups G, based on the Geometric Invariant Theory (GIT) of Moy-Prasad quotients. Stable functionals on these quotients are used to give a new construction of supercuspidal representations of G having small positive depth, called epipelagic. With some restrictions on p, we classify the stable and semistable functionals ...
متن کامل